Eigenvectors and Eigenvalues.
Main question:

- Let $T: V \rightarrow V$ be a linear operator on a (finite dimensional) vector space.

Let $B=\left\{\bar{b}_{1}, \bar{b}_{2}, \ldots, \bar{b}_{n}\right\}$ be a basis for V.
-The matrix associated with T with respect to B is given by

$$
M_{T}^{B}=\left(\left[T\left(\bar{b}_{1}\right)\right]_{B} \cdots\left[T\left(\bar{b}_{n}\right)\right]_{B}\right)
$$

Is it possible to find some basis C of V such that M_{T}^{c} is as simple as possible?

CDlagonal
Recall that:

$$
M_{T}^{C}=\underset{C \leftarrow B}{P} M_{T}^{B} \underset{B \leftarrow C}{P}
$$

Goal: Find a basis C (when possible) such that M_{T}^{c} is diagonal

$$
T: V \rightarrow V
$$

$$
M_{T}^{c}=\left(\begin{array}{lllll}
\lambda_{1} & & & & \\
& \lambda_{2} & \cdots & \\
& & & \lambda_{n}
\end{array}\right)_{\substack{n \times n}}
$$

$$
\operatorname{dim} V=n
$$

That is, if $C=\left\{\bar{c}_{1}, \bar{c}_{2}, \ldots, \bar{c}_{n}\right\}$

$$
\begin{aligned}
& M_{T}^{c}=\left(\left[T\left(\bar{c}_{1}\right)\right]_{C}\left[T\left(\bar{c}_{2}\right)\right]_{C} \cdots\left[T\left(\bar{c}_{n}\right)\right]_{C}\right) \\
& =\left(\begin{array}{cc}
\lambda_{1} & \\
\cdots & \\
& \\
\lambda_{n}
\end{array}\right) \\
& D\left[T\left(\bar{c}_{1}\right)\right]_{C}=\left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
0
\end{array}\right) \Rightarrow T\left(\bar{c}_{1}\right)=\lambda_{1} \bar{c}_{1} \\
& {\left[T\left(\bar{c}_{2}\right)\right]_{c}=\left(\begin{array}{c}
0 \\
\lambda_{2} \\
\vdots \\
0
\end{array}\right) \Rightarrow T\left(\bar{c}_{2}\right)=\lambda_{2} \bar{c}_{2}} \\
& \vdots \\
& {\left[T\left(\bar{c}_{n}\right)\right]_{c}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
\lambda_{n}
\end{array}\right) \Rightarrow T\left(\bar{c}_{n}\right)=\lambda_{n} \bar{c}_{n}}
\end{aligned}
$$

Eigenvalues and Eigenvectors.
Definition. Let $T: V \rightarrow V$ be a linear mapping.

An eigenvector of T is a non zero vector $\bar{x} \in V$ such that

$$
T(\bar{x})=\lambda \bar{x} \quad \bar{x} \neq \overline{0}
$$

for some scalar λ. eigenvector:

- vector propio
- autivector
- The scalar λ is called the eigenvalue associated with \bar{x}.

$$
\left(\begin{array}{lll}
\lambda_{1} & & \\
& \lambda_{2} & \\
& & 0 \\
& & \lambda_{3}
\end{array}\right)
$$

Eigenvalues are allowed to be zero.

Example. Let $T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be defined by

$$
T([x])-[-y] \quad \mathbb{C}^{2}=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right]: x, y \in e\right\}
$$

Eigenvalues? $\lambda_{1}=i, \lambda_{2}=-i$

$$
\begin{aligned}
& \left.\lambda_{1}=i\right) T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-y \\
x
\end{array}\right]=i\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& (-y=i x] \\
& i \rightarrow x=i y) \\
& i x=-y \quad\left[\begin{array}{l}
x \\
y
\end{array}\right]=\alpha\left[\begin{array}{l}
i \\
1
\end{array}\right] \quad \alpha \in \mathbb{R} \\
& \quad-y=i(i y)=-y \Rightarrow 0=0
\end{aligned}
$$

$\left.\lambda_{2}=-i\right]$ if $\left[\begin{array}{l}x \\ y\end{array}\right]$ is an eigenvector then

$$
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=-i\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad\left[\begin{array}{c}
-y \\
x
\end{array}\right]=-i\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
\begin{aligned}
& -y=-i x \\
& x=-i y \\
& -i x=+i(+i) y=-y
\end{aligned} \Rightarrow\left[\begin{array}{l}
x \\
y
\end{array}\right]=\beta\left[\begin{array}{r}
-i \\
1
\end{array}\right]
$$

Basis of \mathbb{C}^{2} formed totally by eigenvectors of $T: C=\left\{\binom{i}{1},\binom{-i}{1}\right\}$

$$
M_{T}^{c}=\left(\begin{array}{lc}
i & 0 \\
0 & -i
\end{array}\right)
$$

$\operatorname{dim} \mathbb{C}^{2}=2$. 2 dinctinct eigenvalue $\operatorname{dim} V=5,3$ distinct eigenvalues
$\left.3 \bar{v}_{1}, \bar{v}_{3}\right\}$ lind.

$\left\{\sigma_{2}, \sqrt{3}\right\}$. l. ind. $\quad\left\{\bar{u}_{1}, \sqrt{2}\right\}$?
linear:

- function
- mapping.
- transformation
- operator.

Theorem. Let $T: V \rightarrow V$ be a linear operator. Let $\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{m}$ be eigenvectors associated with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\left(\lambda_{i} \neq \lambda_{j}\right.$ when $\left.i \neq j\right)$.
Then $\left\{\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{m}\right\}$ is a linearly independent set.

Corolary Let $T: V \rightarrow V$ be a linear operator. Then T has at most $\operatorname{dim} V$ eigenvectors. "n \downarrow lin. ind.

Example Let V be the (infinite dimensional) vector space of functions with derivatives of any order.

Let $T: V \rightarrow V$ be a linear operator defined by $T[f]=f^{\prime}$.
For each $\lambda \in \mathbb{R}$, consider the function $f_{\lambda}(t)=e^{\lambda t} \leftarrow$ eigenvectors of T

$$
\begin{aligned}
& T\left[e^{\lambda t}\right]=\frac{d}{d t} e^{\lambda t}=\lambda e^{\lambda^{t}} \quad T\left[f_{\lambda}\right]=\lambda f_{\lambda} \\
& \lambda_{1} \neq \lambda_{2} \quad\left\{e^{\lambda_{1} t}, e^{\lambda_{2} t}\right\} \text { lin ind. }
\end{aligned}
$$

Example. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear operator defined by

$$
\begin{aligned}
& \text { operator defined by } \\
& T(\bar{x})=\left(\begin{array}{rrr}
4 & -1 & 6 \\
2 & 1 & 6 \\
2 & -1 & 8
\end{array}\right) \stackrel{\varepsilon_{3}, \varepsilon_{3}}{\stackrel{x}{x}} M_{T}^{2,9}
\end{aligned}
$$

$\lambda_{1}=2$ is an eigenvalue of T with associated eigenvectors

$$
\underbrace{\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right),\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right)}, \underbrace{\binom{3}{1}}_{\binom{1}{2}+\left(\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right)}
$$

$\lambda_{2}=9$ is an eigenvalue of T with associated eigenvector $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
λ :

$$
\begin{array}{rlrl}
T(\bar{x})=\lambda \bar{x} & T(\alpha \bar{x}+\beta \bar{y}) & =\alpha T(\bar{x})+\beta T(\bar{y}) \\
T(\bar{y}) & =\alpha \bar{y} & & \\
& T(\alpha \bar{x}+\beta \bar{y}) & =\lambda(\alpha \bar{x}+\beta \bar{y})
\end{array}
$$

$$
\begin{aligned}
& T\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{ccc}
4 & -1 & 6 \\
2 & 1 & 6 \\
2 & -1 & 8
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{l}
2 \\
4 \\
0
\end{array}\right)=2\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right) \\
& T\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{ccc}
4 & -1 & 6 \\
2 & 1 & 6 \\
2 & -1 & 8
\end{array}\right)\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
-6 \\
0 \\
2
\end{array}\right)=2\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right) \\
& E_{2}=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right),\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right)\right\}
\end{aligned}
$$

Definition. Let $T: V \rightarrow V$ be a linear operator. For each eigenvalue λ of T, we define the set

$$
E_{\lambda}=\operatorname{Span}\{\bar{x}: T(\bar{x})=\lambda \bar{x}\} \subseteq V
$$

Called the eigenspaces associated with λ.
Theorem E_{λ} is a subspace of V. We call E_{λ} the eigenspace associated with λ.

Theorem ${ }^{*}$ Let $T: V \rightarrow V$ be a linear operator, at let M_{T}^{B} be its associated matrix with respect to a basis B.

For each eigenvalue λ of $T: \quad T(\bar{x})=A \bar{x}$

$$
\begin{array}{ll}
E_{\lambda}=\operatorname{Ker}\left(T-\lambda I_{d}\right) & \begin{array}{l}
T(\bar{x})=\lambda \bar{x} \\
\left(\operatorname{Nul}\left(M_{T}^{B}-\lambda I_{n}\right)^{\prime}\right)
\end{array} \\
\left(T-\lambda I_{d}\right)(\bar{x})=\overline{0}
\end{array}
$$

λ is a root of the polynomial

$$
\operatorname{det}\left(M_{T}^{B}-\lambda I_{n}\right)^{0}
$$

degree $\operatorname{dim} V$

$$
\begin{aligned}
& M_{T}^{B}[\bar{x}]_{B}-\lambda[\overline{\bar{x}}]_{B}=\overline{0} \\
& \left(M_{T}^{B}-\lambda I\right)[\bar{x}]_{B}=0
\end{aligned}
$$

$$
\overbrace{B}^{T(\bar{x})=\lambda \bar{x}} \xrightarrow{B}[T(\bar{x})]_{B}=M_{T}^{B}[\bar{x}]_{B}=\lambda[\bar{x}]_{B}
$$

Definition. Let $T: V \rightarrow V$ be a linear operator and let M_{T}^{B} be its associated matrix with respect to a basis B.

- The polynomial

$$
\operatorname{det}\left(M_{T}^{B}-\lambda I_{n}\right)
$$

of degree $n=\operatorname{dim} V$ is called the characteristic polynomial of T (or of $M \frac{k}{T}$).
$\Rightarrow \operatorname{det}\left(M_{T}^{\beta}-\lambda I_{n}\right)=0$ is called the characteristic equation of T (or of M_{T}^{B}).

Example Find the eigenvalue and eigenvectors of the linear mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(\bar{x})=A \bar{x}$ where

$$
A=\left(\begin{array}{cc}
2 & 3 \\
3 & -6
\end{array}\right)
$$

Example Find the eigenvalues and eigenvectors of the linear mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(\bar{x})=A \bar{x}$

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Example Find the eigenvalues and eigenvectors of the linear mapping $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ defined by $T(\bar{x})=A \bar{x}$ where

$$
A=\left(\begin{array}{cccc}
5 & -2 & 6 & -1 \\
0 & 3 & -8 & 0 \\
0 & 0 & 5 & 4 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Theorem. The characteristic polynomial of a linear operator is invariant under change of basis.

Multiplicity of eigenvalues
Example. $A=\left(\begin{array}{lll}2 & 2 & 3 \\ 0 & 2 & 2 \\ 0 & 0 & 2\end{array}\right)$

Example $A=\left(\begin{array}{ccc}2 & 2 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 2\end{array}\right)$

Theorem Let $T: V \rightarrow V$ be a linear operator and let $p(x)$ be its characteristic polynomial.
For each eigenvalue λ,

$$
p(x)=(x-\lambda)^{m_{\lambda}} q(x), \quad q(\lambda) \neq 0
$$

and $1 \leqslant \operatorname{dim} E_{\lambda} \leqslant m_{\lambda}$ where E_{λ} is the eigenspace associated with λ.

Diagonalizable linear mappings
Definition. A linear mapping $T: V \rightarrow V$ is diaganolizable if there exists a basis

$$
B=\left\{\bar{b}_{1}, \bar{b}_{2}, \ldots, \bar{b}_{n}\right\}
$$

of V made up entirely of eigenvectors of T. Consequently,

$$
M_{T}^{B_{1} B}=\left(\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & \\
& & \ddots & \\
& & \lambda_{n}
\end{array}\right)
$$

where $T\left(\bar{b}_{i}\right)=\lambda_{i} \bar{b}_{i}, i=1,2, \ldots, n$.

Theorem. A linear mapping $T: V \rightarrow V$ ($n=\operatorname{dim} V$) is diagonalizable if and only if T has n linearly independent eigenvectors.

Corollary. If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are distinct eigenvalues of a linear mapping $T: V \rightarrow V$, then T is diagonalizable if and only if

$$
\operatorname{dim} E_{\lambda_{1}}+\operatorname{dim} E_{\lambda_{2}}+\cdots+\operatorname{dim} E_{\lambda_{k}}=n
$$

If and only if, for each eigenvalue λ with multiplicity $m_{\lambda}, \operatorname{dim} E_{\lambda}=m_{\lambda}$.

- If and only if, for each eigenvalue λ with multiplicity m_{λ}, there exist m_{λ} linearly independent eigenvectors associated with λ

Corollary. If each eigenvalue of $T: V \rightarrow V$ has multiplicity 1 , then T is diagonalizable.

Example If possible, diagonalize the linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(\bar{x})=A \bar{x} \quad$ where

$$
A=\left(\begin{array}{ccc}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{array}\right)
$$

Example If possible, diagonalize the linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(\bar{x})=A \bar{x} \quad$ where

$$
A=\left(\begin{array}{ccc}
2 & 4 & 3 \\
-4 & -6 & -3 \\
3 & 3 & 1
\end{array}\right)
$$

Example If possible, diagonalize the the linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(\bar{x})=A \bar{x}$ where $A=\left(\begin{array}{ccc}5 & -8 & 1 \\ 0 & 0 & 7 \\ 0 & 0 & -2\end{array}\right)$

