Eigenvectors and Eigenvalues. Main guestion:

► Let T: V→V be a linear operator on a (finite dimensional)

vector space.

Let B=1b, bz,..., bn] be

a basis for V.

The matrix associated with T with respect to B is given $M_{T}^{B} = \left(\left[T(\bar{b}_{l}) \right]_{B} \cdots \left[T(\bar{b}_{n}) \right]_{B} \right)$

Is it possible to find some basis C of V such that MT is as simple as possible? Diagonal Recall that: $M_{T}^{c} = P M_{T}^{B} P$ $C \in B \qquad B \in C$

Eigenvalues and Eigenvectors. Definition. Let T: V->V be a linear mapping. An eigenvector of T is a non zero vector $\overline{x} \in V$ such that $T(\bar{x}) = \lambda \bar{x} \quad \bar{x} \neq \bar{0}$ for some scalar 2. eigensector: · vector propio · autovector The scalar & is called the eigenvalue associated with K. $\begin{pmatrix} \lambda_2 \\ 0 \end{pmatrix}$ Eigenvalues are allowed to be zero.

Theorem. Let $T: V \rightarrow V$ be a linear operator. Let $\overline{X_1, \overline{X_2, ..., X_m}}$ be eigenvectors associated with distinct eigenvalues $\overline{X_1, \overline{X_2, ..., X_m}}$ ($\overline{X_1 \neq X_2}$, when $i \neq j$). Then $\{\overline{X_1, \overline{X_2, ..., X_m}}\}$ is a linearly independent set.

Corolary let $T: V \rightarrow V$ be a linear operator. Then T has at most dim V eigenvectors. I lin. ind. at most a distinct eigenvalue Those , at most n lin. ind. cigenvectors

Example Let V be the (infinite dimensional) vector space of functions with derivatives of any order.

Let $T: V \rightarrow V$ be a linear operator defined by T[f] = f!For each $\lambda \in \mathbb{R}$, consider the function $f_{\lambda}(t) = e^{\lambda t} \leftarrow eigenvectors \ of T$

 $T\left[e^{\lambda t}\right] = \underline{d} e^{\lambda t} = \lambda e^{\lambda t} T\left[f_{\lambda}\right] = \lambda f_{\lambda}$ dt

 $\lambda_1 \neq \lambda_2$ $\{e^{\lambda_1 t}, e^{\lambda_2 t}\}$ lin ind.

$$T\begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix} = \begin{pmatrix} 4 & -1 & 6\\ 2 & 1 & 6\\ 2 & -1 & 8 \end{pmatrix} \begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix} = \begin{pmatrix} 2\\ 4\\ 0 \end{pmatrix} = 2\begin{pmatrix} 1\\ 2\\ 0 \\ 0 \end{pmatrix}$$
$$T\begin{pmatrix} -3\\ 0\\ 1 \end{pmatrix} = \begin{pmatrix} 4 & -1 & 6\\ 2 & 1 & 6\\ 2 & -1 & 8 \end{pmatrix} \begin{pmatrix} -3\\ 0\\ 1 \end{pmatrix} = \begin{pmatrix} -6\\ 0\\ 2 \end{pmatrix} = 2\begin{pmatrix} -3\\ 0\\ 2 \end{pmatrix}$$
$$E_{2} = Span \left\{ \begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix}, \begin{pmatrix} -3\\ 0\\ 1 \end{pmatrix} \right\}$$
$$E_{4} = Span \left\{ \begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix}, \begin{pmatrix} -3\\ 0\\ 1 \end{pmatrix} \right\}$$

Definition. Let $T: V \rightarrow V$ be a linear operator. For each eigenvalue λ of T, we define the set

 $E_{\lambda} = Span \{ \overline{x} : T(\overline{x}) = \lambda \overline{x} \} \leq V$

Called the eigenspaces associated with 2. Theorem Ez is a subspace of V. We call En the eigenspace associated with 2.

Theorem Let $T: V \rightarrow V$ be a linear operator, at let M_T^{\ddagger} be its associated matrix with respect to a basis B

TLISAX For each eigenvalue 2 of T: T(x)=2x +(2)-22=0 $E_{\lambda} = Ker \left(T - \lambda I_{d} \right)$ $\left(Nul \left(M_{T}^{B} - \lambda I_{n} \right) \right)$ (T-2Ia)(R)=0 dim Ez= dim V- Rank (MT-ZIn)

> > is a root of the polynomial $det(M_T^{*} - \lambda I_n)$ $M_{T}^{B}[\bar{x}]_{B} - \lambda[\bar{x}]_{B} = \bar{o}$ degree din V $(M_T^B - \lambda I) [\bar{x}]_B = 0$ $T(\overline{x}) = \lambda \overline{x} \xrightarrow{B} [T(\overline{x})]_{B} = M_{T}^{B} [\overline{x}]_{B} = \lambda [\overline{x}]_{B}$ B

Definition. Let $T: V \rightarrow V$ be a linear operator and let M_T^B be its associated matrix with respect to a basis B.

The polynomial $det(M_T^B - \lambda I_n)$ Of degree n = dim V is called the characteristic polynomial of T(or of M_T^{*}).

• $det(M_T^B - \lambda I_n) = 0$ is called the characteristic equation of T(or of M_T^B).

Example Find the eigenvalues and eigenvectors of the linear mapping $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ defined by $T(\bar{x}) = A \bar{x}$ where

Example Find the eigenvalues and eigenvectors of the linear mapping $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(\bar{x}) = A\bar{x}$

Example Find the eigenvalues and eigenvectors \circ f the linear mapping $T: \mathbb{R}^4 \to \mathbb{R}^4$ defined by $T(\bar{x}) = A \bar{x}$ where

Theorem. The characteristic polynomial of a linear operator is invariant under change of basis.

Example $A = \begin{pmatrix} 2 & 2 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix}$

Theorem let $T: V \rightarrow V$ be a linear operator and let p(x) be its characteristic polynomial. For each eigenvalue λ ,

 $p(x) = (x - \lambda)^{m_2} q(x), q(\lambda) \neq 0$

and $1 \leq \dim E_2 \leq m_2$ where E_2 is the eigenspace associated with λ . Diagonalizable linear mappings

Definition. A linear mapping T: V→V is diaganolizable if there exists a basis B= {b₁, b₂,..., b_n} of V made up entirely of eigenvectors of T. Consequently,

where $T(\overline{b}_i) = \lambda_i \overline{b}_i$, i=1,2,...,n.

Theorem. A linear mapping T:V->V (n=dim V) is diagonalizable if and only if T has n linearly independent eigenvectors.

Corollary. If $\lambda_1, \lambda_2, ..., \lambda_k$ are distinct eigenvalues of a linear mapping $T: V \rightarrow V$, then T is diagonalizable if and only if

 $\dim E_{\lambda_1} + \dim E_{\lambda_2} + \dots + \dim E_{\lambda_k} = n.$

If and only if, for each eigenvalue λ with multiplicity m_{λ} , dim $E_{\lambda}=m_{\lambda}$.

If and only If, for each eigenvalue a with multiplicity may, there exist may linearly independent eigenvectors associated with a

Corollary. If each eigenvalue of $T: v \rightarrow v$ has multiplicity 1, then T is diagonalizable.

Example If possible, diagonalize the linear mapping $T: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ defined by $T(\bar{x}) = A\bar{x}$ where

Example If possible, diagonalize the linear mapping $T: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ defined by $T(\overline{x}) = A\overline{x}$ where $A = \begin{pmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{pmatrix}$

Example 17 possible, diagonalize the the linear mapping $T: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ defined by $T(\bar{x}) = A\bar{x}$ where $A = \begin{pmatrix} 5 & -8 & 1 \\ 0 & 0 & 7 \\ 0 & 0 & 7 \\ 0 & 0 & 2 \end{pmatrix}$